Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A Hypergraph Analog of Dirac's Theorem for Long Cycles in 2-Connected Graphs, II: Large UniformitiesDirac proved that each $$n$$-vertex $$2$$-connected graph with minimum degree $$k$$ contains a cycle of length at least $$\min\{2k, n\}$$. We obtain analogous results for Berge cycles in hypergraphs. Recently, the authors proved an exact lower bound on the minimum degree ensuring a Berge cycle of length at least $$\min\{2k, n\}$$ in $$n$$-vertex $$r$$-uniform $$2$$-connected hypergraphs when $$k \geq r+2$$. In this paper we address the case $$k \leq r+1$$ in which the bounds have a different behavior. We prove that each $$n$$-vertex $$r$$-uniform $$2$$-connected hypergraph $$H$$ with minimum degree $$k$$ contains a Berge cycle of length at least $$\min\{2k,n,|E(H)|\}$$. If $$|E(H)|\geq n$$, this bound coincides with the bound of the Dirac's Theorem for 2-connected graphs.more » « lessFree, publicly-accessible full text available January 17, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
Ryser's conjecture says that for every $$r$$-partite hypergraph $$H$$ with matching number $$\nu(H)$$, the vertex cover number is at most $$(r-1)\nu(H)$$. This far-reaching generalization of König's theorem is only known to be true for $$r\leq 3$$, or when $$\nu(H)=1$$ and $$r\leq 5$$. An equivalent formulation of Ryser's conjecture is that in every $$r$$-edge coloring of a graph $$G$$ with independence number $$\alpha(G)$$, there exists at most $$(r-1)\alpha(G)$$ monochromatic connected subgraphs which cover the vertex set of $$G$$. We make the case that this latter formulation of Ryser's conjecture naturally leads to a variety of stronger conjectures and generalizations to hypergraphs and multipartite graphs. Regarding these generalizations and strengthenings, we survey the known results, improving upon some, and we introduce a collection of new problems and results.more » « less
An official website of the United States government
